Semi-explicit discretization schemes for weakly coupled elliptic-parabolic problems
نویسندگان
چکیده
We prove first-order convergence of the semi-explicit Euler scheme combined with a finite element discretization in space for elliptic-parabolic problems which are weakly coupled. This setting includes poroelasticity, thermoelasticity, as well multiple-network models used medical applications. The approach decouples system such that each time step requires solution two small and well-structured linear systems rather than one large system. decoupling improves computational efficiency without decreasing rates. presented proof is based on an interpretation implicit method applied to constrained partial differential equation delay term. Here, equals size. connection also allows deeper understanding weak coupling condition, we accomplish quantify explicitly.
منابع مشابه
Monotone Difference Schemes for Weakly Coupled Elliptic and Parabolic Systems
The present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is introduced and the definition of its monotonicity is given. This definition is closely associated with the prope...
متن کاملSuper-time-stepping Acceleration of Explicit Schemes for Parabolic Problems
The goal of the paper is to bring to the attention of the computational community a long overlooked, very simple, acceleration method that impressively speeds up explicit time-stepping schemes, at essentially no extra cost. The authors explain the basis of the method, namely stabilization via wisely chosen inner steps (stages), justify it for linear problems, and spell out how simple it is to i...
متن کاملExplicit schemes for parabolic and hyperbolic equations
Standard explicit schemes for parabolic equations are not very convenient for computing practice due to the fact that they have strong restrictions on a time step. More promising explicit schemes are associated with explicit-implicit splitting of the problem operator (Saul’yev asymmetric schemes, explicit alternating direction (ADE) schemes, group explicit method). These schemes belong to the c...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملViscosity solutions for elliptic-parabolic problems
We study an elliptic-parabolic problem appearing in the theory of partially saturated flows in the framework of viscosity solutions. This is part of current investigation to understand the theory of viscosity solutions for PDE problems involving free boundaries. We prove that the problem is well posed in the viscosity setting and compare the results with the weak theory. Dirichlet or Neumann bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2021
ISSN: ['1088-6842', '0025-5718']
DOI: https://doi.org/10.1090/mcom/3608